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\ ABSTRACT
N The problem of cavitating flow past a two-dimensional curved obstacle is
considered. Surface tension is included in the dynamic boundary condition.
The problem is solved numerically by series truncation. Explicit solutions
are presented for the flow past a circle. It is shown that for each value of
the surface tension different from zero, there exists a unique solution which
leaves the obstacle tangentially. As the surface tension approaches zero,
this solution tends to the classical solution satisfying the Brillouin -
Villat condition. Vanden-Broeck considered the effect of surface tension on
the cavitating flow past a flat plate and on the shape of a jet emerging from
a reservoir. His results indicate that the velocity is infinite at the
separation points. It is shown that these unbounded values of the velocity

-
are removed when the thickness and finite curvature of the ends of the plate

and of the ends of the walls of the reservoir are taken into account.ﬁﬁ

AMS (MOS) Subject Classification: 76B10
Key Words: Surface tension, Cavitating flow

Work Unit Number 2 - Physical Mathematics

Sponsored by the United States Army under Contract No. DAAG29-80-~C-0041 and
the National Science Foundation under Grant No. MCS821-5064.

'O"’O . J . - (R - .- -
.p"f A A .r)f‘.f.r.- S -') ..-,.’-r.-\.--_.-".-,,-.r o T AT
"'"".»,(.- AT A R - . - 4-.'“~ .-.ﬂ""" st AP
v '.- , ~

v u' 'o 'i(f

230! *&L}h"‘u NN

AT

¢

-
F
Iy
LAY

L4

J

A

»
1 4




Y S O N T Ty N W T L LV Y T e TV To LY TV TR I U IV TV Y]

-
-

X o

s SIGNIFICANCE AND EXPLANATION
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In the present work we consider the effect of surface tension on the

ANt

cavitating flow past a curved obstacle. Wwhen surface tension is neglected the

problem has an infinite number of solutions. We show that this degeneracy is

3
il

removed by solving the problem with surface tension and then taking the limit

A

as the surface tension tends to zero. Explicit numerical results are

presented for the cavitating flow past an ellipse.

The results presented here should be relevant to any physical situation

£

in which the free surface of a fluid intersects a solid surface.
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N NUMERICAL SOLUTIONS FOR CAVITATING FLOW e
If.‘j' OF A FLUID WITH SURFACE TENSION PAST A CURVED OBSTACLE -
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S T
N Jean-Marc Vanden-Broeck T
( v 1. Introduction o
» 2,
""' We consider the cavitating flow past a two-dimensional curved obstacle :'.'::.
N e
\; (see Fig. 1). We neglect the effects of viscosity and compressibility. The {.1
‘--) cavity is characterized by its constant pressure Po and its surface L.1
Ol o
1939 P
:«%j tension T while the fluid has density p, pressure pe at infinity and ;}‘,1
“"‘: 1".1"
*3- constant velocity U at infinity. We restrict our attention to obstacles '::"4
“, which are symmetrical with respect to the direction of velocity at infinity. .
) p
Yo -
b i] The problem with T = 0 has been considered by many previous investiga- .:j:
; si tors (see Birkhoff and Zarantonello [1] for a review). Efficient numerical :‘{:‘;
S
, schemes were derived by Brodetsky [2], Vanden-Broeck {3] and others. The @
£ e
' results of these calculations show that a solution exists for all positions of }.j
X o
g ' the separation points A and B. This degeneracy is usually removed by }::Z
- imposing the Brillouin - Villat condition, which requires the curvature of the .9
A o
ZC"{ free surface to be finite at the separation points A and B. :{.;
ﬁ The effect of surface tension on the cavitating flow past a curved i_',:“
¥ -
. obstacle was considered by Vanden-Broeck {3]. Vanden-Broeck derived an o
4 Lo
HA
-\,:‘_: asymptotic solution for T small. He found that for most positions of the 4 Y
4
:& separation points, the flow does not leave the obstacle tangentially. 1In
vl addition he showed the existence for each value of T of a particular \.
N -l
'_'.:‘E position of the separation points A and B for which the slope is ;.:-‘
30 -
; '-," : continuous at A and B. However he did not compute these solutions ‘_
2 o
X .‘ explicitly. L
S:'- :.\‘:h
A
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,, Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and "'-.“
A the National Science Foundation under Grant No. MCS821-5064. ~z

v S R e
.\'-'."\"\’:\'F ‘l: - ': LSRR LA . '
s ..P~ s L] s I . . P ) ) - - - \
\ { » \ “ \
s = W L o) s ., L\;.\'._\..q‘;f‘

’.-I'

e . =
.\.'f';\_\__-.
>, T A




o Sy

G
D

- -
" e ..
.

axiadn ol A

et
Sy 42 I8

) AalsT

Sketch of the flow and the coordinates.
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In the present paper we solve the cavitating flow problem numerically by
series truncation. We assume that the flow leaves the obstacle tangentially.
Explicit solutions are presented for the flow past a circle. Our results
confirm Vanden-Broeck's [3] findings. For each value of T there exists a
unique solution which leaves the curved obstacle tangentially. As T + 0,
these solutions approach the classical solution satisfying the Brillouin =~
Villat condition. Therefore the degeneracy of the problem with T = 0 is
removed by solving the problem with T + 0 and then taking the limit as
T + 0.

Vanden-Broeck [4] investigated the effect of surface tension on the
cavitating flow past a flat plate. He found that the velocity at the
separation points is infinite for all values of T + 0. We show that these
unbounded values of the velocity are removed by replacing the plate by a thin
ellipse.

The problem is formulated in Section 2. The numerical scheme is

presented in Section 3 and the results are discussed in Section 4.
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N

;: 2. Formulation

i Let us consider the cavitating flow past a curved smooth and symmetrical
*: obstacle. We choose Cartesian coordinates such that the flow is symmetrical
i' with respect to the x-axis (see Fig. 1). We denote by L a typical length of
'E the obstacle and by U the velocity at infinity. We choose L as the unit
Fi length and U as the unit velocity.

, We introduce the potential function b¢ and the stream function by.

;S The constant b is chosen such that ¢ = 1 at the separation points A

;; and B. Furthermore we choose ¢ =0 at x =y =0 and ¢y = 0 on the free
{
\?' surface. The flow configuration in the complex potential plane £ = ¢+iy 1is
: illustrated in Fig. 2.

<

We denote the complex velocity by Z = u-iv and we define the function

T - 16 by the relation

6 e oy
We shall seek T - 16 as an analytic of f = ¢+iy in the half plane ¢ < O. NSNS

57 Aak,

..b‘

On the surface of the cavity the Bernoulli equation and the pressure jump

5

due to surface tension yield (see Ackerberg [5] for details)

T

Q

12t o
e " 2% -V (2) T
-

U"m

1< <o .

Here a is the Weber number defined by

B ™ LS

a-e% . (3)

vl

We shall seek solutions for which the flow leaves the obstacle

L
o a'atalals

tangentially. Therefore we require the velocity to be finite at ¢ = 1.
T
EL:)
Relation (2) shows that the curvature of the free surface %— 35 is then also

finite at ¢ = 1 for a % ®. Thus we impose the condition

A
l%% <o at ¢ =1 . i
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3 However we do not require the curvature of the free surface to be equal to the FIRAN
. IS
s oA
; curvature of the obstacle. Therefore we allow a finite jump discontinuity of .‘" A
L] PR
w 36 .
‘ W at ¢ = 1, -
: Finally the symmetry of the problem and the kinematic condition on the
g;
X! obstacle yield
N
Y 6(¢) = 0 =0, $ <0 (4)
4
:: Flx($),y($)] =0 V=0, 0<d<t . (5)
)
j Here F(x,y) = 0 is the equation of the shape of the obstacle and 6(¢),
t x(¢) and y(¢) denote respectively 6(4,0_ ), x(4,0_) and y(4,0_).
Y
5 This completes the formulation of the problem of determining the function
2 T - 16, For each value of a, T - i@ must be analytic in ¥ < 0 and satisfy
K the boundary conditions (2), (4) and (5).
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3. Numerical procedure

We define the new variable t by the transformation
t+1
£ =4 =1 (6)
This transformation maps the lower half plane ¢ €< 0 onto the unit circle in
the complex t-plane so that the free-surface, the boundary of the obstacle and
the negative x-axis go onto the circumference (see Fig. 3).

For x and y small the flow can be locally described as the flow
inside a right angle corner. Using (6) we obtain
g~ (1:+1)1/2 as t > -1 . (7
At infinity we require the velocity to be unity in the x-direction. Hence
g+1 as t =+ 1 . (8)

We shall represent 7 by the expansion

T‘ie 1/2 g n
I =e = (t+1) néo (€, *+1d Ot . (9)

s

2 &3

.l
.'.".

The expansion (9) satisfies (7). The unknown coefficients C, and &, and
the constant b have to be determined to satisfy (2), (4), (S) and (8).
We use the notation t = |t|eic so that the streamline Y = 0 is given

by t = e, 0<o<2r. Using (6) we rewrite (2) in the form

w 20 T a0 1 2T "
b 2 sin 2 ® a0 - 2 a(e - 1) 0<o ¢« 3 (10)

Here ?(d) and 3(0) denote the values of T and 9 on the circumference.

The functions ?(a) and 3(0) can be evaluated in terms of cn, dn and b

by substituting t = eio in (9).

~

In order to evaluate 22 for 0 < o < %, we differentiate term by term

do
the expansion for 3(0). This new expansion can be expected to converge to
a8 n 1 a8 a8 n
a0 for 0 < 0 < 3 and to 2 [(3-3)0-(1) + (d")o.(.’l) ] for o 3 where we

2'= 2°+

anticipate a discontinuity in curvature.
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We solve the problem approximately by truncating the infinite series in
(9) after N terms. For convenience we choose N to be odd. We find the

2N coefficients Cn and dn and the constant b by collocation. Thus we

introduce the 2N - 2 mesh points

2m 1
OI-m(I -2)' 1-1'00-’2N-2 . (11)
Using (9) and (11) we obtain [r(o)lozoI, [9(0)]""’1 and [dalc,ox in terms

of the coefficients Ch and dn. Substituting these expressions into (4) and

(10) we obtain 3(N-1)/2 equations.

From (1) and (6) we obtain

dx -b -1 ”
& 2 ]
& 30 > g © cos (12)
2 8in” <
2
(
‘ & D Teind . (13)
] do g
; 2 gin =
a Relations (12) and (13) enable us to calculate [EE] and [21] in
3 do” o=0 do o=0
A terms of Chr dn and b. Using the trapezoidal rule we then calculate
4
: x(GI) and y(cI).
o The boundary condition (S) can now be rewritten as
I
y F[x(oI), y(OI)] =0
d (14)
N+1
\|’ I ™ m— e N"1
0 2 [4 ’
b $
. Relation (14) provides E%l extra equations. Therefore we have 2N-2
'
'E nonlinear equations for the 2N+1 unknowns C,, 4, and b. The condition
{f (8) provides the extra equation
[T(O)]ogo =0 . (15)
iy
j The last two equations are obtained by imposing (4) at o = %1 and (10) at
. n
c g = 3" Thus we obtain for each value of a a system of 2N+1 nonlinear
7
. algebraic equations for the 2N+1 unknowns Cn, dn and b. The system is
]
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Y solved by Newton method. Once the system is solved, the shape of the free ‘:i.:,
A .‘,\‘,
; N-1 o
:‘,; surface is then given parametrically by x(a ), y(o Yo I = 1,000, 2 Jes
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4. Discussion of the results P;!
We consider the cavitating flow past a circle. We choose the reference . 2

-‘._"’-

‘ length L as the radius of the circle. Therefore we write S
2, .2 .9

F(x,y) = (x=1)" + y~ = 1 (16) o

2

K5C)

We used the numerical scheme of section 3 to compute solutions for ;::H

.-'_. -.:.

various values of a. The coefficients C, and dn were found to decrease iﬂf
rapidly a8 n increases. f;§;
-~ ::

Our numerical results confirm Vanden-Broeck's findings. For each value N

of a $ ®, there exists a unique solution that leaves the obstacle b:‘ﬂ

tangentially. Typical profiles of the free surface for a = 0, 2 and *® are
shown in Fig. 4. Each of these profiles is characterized by a different
angular position Y of the separation pointa. Values of Y as a function of
0-1 are shown in Fig. 5.

As a approaches infinity, our solution tends to the classical free-
streamline solution satisfying the Brillouin -~ Villat condition. This
solution is characterized by Y = Y. ~ 550. Therefore the degenerancy of the
problem with T = 0 is removed by solving the problem with T + 0 and then
taking the limit as T + 0.

As a+0, Y+ 90o and the free surface profile approaches two
horizontal lines parallel to the direction of the velocity at infinity (see
Fig. 4).

Similar results are found for the cavitating flow past an ellipse. The
length L is chosen as the half-length of the axis parallel to the y-axis and
the ellipses are parametrized by the dimensionless half-length r of the axis

parallel to the x-axis (see Fig. 6). The previous results for the flow past a

circle corresponds to r = 1.
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The limiting configurations o« + 0 and a+® for r = 0.2 are shown

e

in Fig. 6. The solution obtained in the limit a + @ 1is the classical

4
-

solution satisfying the Brillouin - Villat condition. The solutions corre-
sponding to the limit o + 0 are characterized by a separation point at
XxX=r and y = 1.

As r + 0, the ellipse approaches a flat plate parallel to the y-axis
and the separation point of the limiting solution a + ® approaches the
separation point x = r, y = 1 of the limiting solution a + 0. Therefore
all the solutions for r small and 0 < a < ® have their separation points
in the immediate neighbourhood of x = r, y = 0.

vanden-Broeck [4] considered the effect of surface tension on the
cavitating flow past a flat plate (i.e., the limiting problem r = 0). He
provided analytical and numerical evidence that the velocity at the separation
points is infinite for all values of a + ®, Our results show that these
unbounded values of the velocity are removed by replacing the flat plate by a
thin ellipse (i.e., by solving the problem with r + 0 and small).

Vanden-Broeck [6] investigated the effect of surface tension on the shape
of a jet emerging from a reservoir. He also found unbounded values of the
velocity at the separation points. Our results indicate that these unbounded
values of the velocity can be removed by taking into account the finite thick-

ness and finite curvature of the ends of the walls of the reservoir.
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ABSTRACT (continued)

cavitating flow past a flat plate and on the shape of a jet emerging from a
reservoir. His results indicate that the velocity is infinite at the separation
peints. It is shown that these unbounded values of the velocity are removed
when the thickness and finite curvature of the ends of the plate and of the ends
of the walls of the reservoir are taken into account.
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